15, .. #. Polyaev and ». V. suxnov, iuvestigation of heat transfer with gas flow through
a porous wall and an internal heat source,' Izv, Vyssh. Uchebn. Zaved., Mashinostr.,
No. 8, 77 (1969).

A VARTATIONAL PRINCIPLE OF THE HAMILTON TYPE
OF NONLINEAR PHENOMENA OF COMBINED TRANSFER

Yu. T. Glazunov UDC 536,248:517.972.5

A Lagrange function is given on the basis of which the variational principle of
nonlinear combined transfer phenomena is built.

A great applied importance at the present time is possessed by mathematical models
found on the use of a system of nonlinear partial differential equations of the form

0%;

PR }: a;n (9) div (b (9) grad ) + 0, (8) (=1, 2, ..., ). 1)

h==1

Here #1=4d1i(x;, X2, %3, t) (i=1, 2, ..., n) are functions (transfer potentials) which are
continuous together with their derivatives; aik, bik, wj (i, k=1, 2,..., n) are continuous
functions of transfer potentials ¢ = (&1, $2500., 41n).

By means of this system, e.g., we describe phenomena of combined transfer of an arbi-
trary number of substances in a continuous medium occupying a volume v, in the presence of
sources and sinks of substances and, in particular, phenomena of combined heat and mass
transfer [1]. Systems of equations, being particular cases of system (1), lie at the basis
of the investigation of biochemical reactions [2-4], nerve conductivity [5], development of
malignant tumors [6], etc.

It is known that investigation of system (1) in each concrete case is complicated by
difficulties caused by its nonlinearity, and in rare cases is completed in t closed form.

During the recent years in the solution of problems of thermodynamics of irreversible
processes, a greater and greater role is played by variational methods. Allowing us partly
to eliminate the difficulties connected with nonlinearity of the problems, they in a number
of cases allow us to obtain effective approximate solutions of problems of combined transfer
[7, 8]. 1t should be noted that the variational principles forming their basis usually do
not use the Lagrange function, i.e., these principles do not possess a Hamiltonian form.

We consider the possibility of using a variational principle of the Hamilton type in
the solution of problems leading to a system of equations (1).

Taking as [to, t.] an arbitrary segment of time, we write the integral of action in
the form

ty

= [ [ dvdt. (2)

J o
to¥

We shall assume for a start that some natural boundary conditions are absent. This
assumption is equivalent to the assertion that variations of transfer potentials &1 (i=1,
2, .., n) on the boundary of the volume v are zero at any time instant t(tosSt=t,), and
also 5&i]to =5&iIt1 =0 within the volume v and on its boundary.

The system of equations (1) can be obtained by means of the variational principle §I=0,
if in (2) we take the Lagrange equation in the form

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 39, No. 3, pp. 475-481, September,
1980. Original article submitted September 28, 1979.
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Fig. 1. Comparison of
approximate temperature
profiles (points) with
exact profiles (solid
lines) for the case of an
infinite plate in dimen-
sionless variables,

g=2 Zl [f}i— W i (9 i (5 (9) rad 0)—o (ﬁ)rexp = 3)

k=1

while the parameter o, entering into the Lagrangian (3) is allowed to tend to zero after
the process of variation is completed (here by a dot above the symbol we denote a derivative
with respect to time).

Indeed, applying with (3) taken into account the system of Euler—Lagrange equations
for the generalized coordinates #1
3

o 9 ¢ N\ _O o & 0k 0 (i=1,2 ..., 1),

06; O 09;  4md Ox;  0(00y0x) +f:1‘ ax;  0(0%9:/0x7) )

we obtain after division of both sides by exp(t/a), expressions of the form

- “ . . 09y .
G — glaih div (b;x grad §) —w; = G; (xh L, B i o, y e “) ((t=1,2 ..., n)

If the Lagrangian is chosen in the form of relation (3), then functions Gi on the
right side of the last expression tend to zero under the condition «-0. With this taken in
into account, Lagrangian (3) leads to the system of equations (1).

The approach to the construction.of variational principles of the Hamilton type just
considered is generalized to the case of nonlinear anisotropic combined transfer of an arbi-
trary number of substances. This phenomenon takes place when the coefficients of conductiv-
ity of the medium for the different substances taking part in the transfer, depend on the
directions of transfer. The system of equations (1) is then written as

09! . 0 : gt , .

T ait(9) L) 2 Lot ) (=12 ..., ). (5)
ot 0%y, oxg )

Here the coefficients Laglk are a tensor of the second rank; over the repeated lower Greek

indices summation is carried out from 1 to 3, while over the upper repeated indices i and k

summation is carried out from 1 to n. The Lagrange function in this case assumes the form

n

o [ o i 0 in og* AREEP.  exn
- Z[ﬁ — o (§) — - (La[g,(ﬂ) ———-—axﬁ ) © (ﬁ):l exp _— (6)

=1

Carrying our for (6) the construction of the Euler—Lagrange equations and going to the
1limit with ¢=0, it can be shown that Eq. (5) follows from (6).

We shall demonstrate the possibility of practical application of the formalism under
consideration, to investigation of problems of combined transfer with an example of a sys-
tem of equations of heat and mass transfer (n=2, 4, and §, are the transfer potentials of
heat and mass of a combined matter):

quﬁi - le (;\’q grad ﬁ'1) + SPCmY\;}z + mq (ﬁ‘ia ﬁ"z), (7)
Cn¥®s = div (A, grad 8,) -+ div (A, grad §s) + ©p (91, B2)-
The Lagrange function (3) in this case has the form

986



& == %] [{}, L div (A, grad §,) — 20 [div (A0S grad 8, --
2| cyy o ‘

1200 2 {
= o grad ﬁl) + (0,,,] - 'COLJ + i ﬂ': "— l div (7‘m6 grad B4+ }"m grad '82) - O —i } exp ——--
Cq% X ;

CmY Cm¥ o ( 8 )

We take

eV = Cu¥¥ Nay  Ap® = An* Ly, 0, = @, O = 0nl,

q

aa 1 ! Ly
A= Ki=—\ K= —, Ky=
R TN TPTON, T N,

(here Mi, Ny, Li, @i (i=1, 2) are continuous functions of the dimensionless transfer poten-
tials 6, and 9,). Then for an infinite plate of thickness R the Lagrange function is writ-
ten as

A[ 08 . 0 [, 08, ) ) < 30, \

. —K — Ko*PnLu K3 | Lo =

<L 2{]_@}?0 ‘ax( tTOX N\ Tox )

o /.. 96 1

= Ko*LuK, —9— [m, 2% )~P0(KQ 1 Ko* LuPo, K2, | -

3 aX ( 1 aX ’ qivi=eg 3 J
00, d 30 o /o6, 7% Fo
-+ i L (L, — A —Lu Ky—— (M ‘—JAK%]%m—ﬁ
| 3 T uPk ax(‘ax) ‘ax(iax) : A (9

With L, =Mp=Np=1, On=0 we consider the sequence of obtaining approximate solutions
of concrete problems for the case of an infinite plate, For this we use the method of
reduction to ordinary differential equations. Specifying the behavior of the potentials
6, and 6, with respect to a spatial variable and computing the integral over this variablie,
the dependence of 6; and 6, on the criterion Fo will be determined, proceeding from the

condition that the FEuler—Lagrange equations are satisfied for the variational integral
over time.

We denote A; =1 +Ko*Pnlu, A, =LuKo*, As;=Lu, A,=LuPn and will assume in the follow-
ing that the free index i runs through the values 1 and 2., We take the boundary conditions

ei(l, FO) = ei (—'— 1, FO) == O, ei (X, 0) == 950(1 __XZ), eiO = Coﬂst-
We shall assume that the distribution of the transfer potentials satisfies the boundary con-
ditions and has the form
0, (X, Fo) = 0y (1— X3 ¢, (Fo), ¢ (0) = 1. (10)

For the determination of the unknown functions @ {(Fo) we substitute expressions (10)
into relation (9) and in the integral of action

Fo, 1!
I= | [&%dXdFo (11)

Fbo —1
we carry out integration over the spatial coordinate. We obtain

Fo, . . Fo, A 2 r a -9
I= [ & @ 00 @ Fo)dFo= [ = {mE;l L95z0¢51~

!50 0 Fo,

. 9 - 15 2 A2
- 5A2771610620(Pm¢3—m - 5A2m—16r310(Pm(Pm + —‘2“ (Am er;z() -

9 2 - , Fo
“‘I" A1~n+29§——m,0) (P:?n j! - 10610620 (AiA‘.’. T A3Aé.) (P:(Pz} eXP T dFo. (12)

If the integral of action (12) is stationary relative to the functions ¥i, which are
independent variables, then the Euler—Lagrange equations
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dFo dg, dp;

must be fulfilled; in the given case they have the form

a oY 0¥ -0

2 . 6,
- 01 Awpy— A4, 2
5

o= Afee -y

10

2 . 8
£ @+ Agpp = A{-- ‘Jor

— p— A4,
5 620
Carrying out transition to the limit with respect to A-+0, we have for determination
of the functions ¢; a system of ordinary differential equations of the form
2 . 0, 2 . 0
= = — A+ A2 g, = A4, —2
1 1Py 3 25 2 4
5 010 5 020
Its solution with the initial conditions ¢ 1(0) =1 and different real roots of the character-
istic equation, e.g., has the form

@y — AP, (13)

P = Ll exp s;Fo -+ :Zi— exp s, Fo,
@y = Ei_ﬁ‘}g_:‘_i)_ exp 81F0 4+ _‘i’z_g__l_::ﬂ eXp S, Fo. .
az""‘al az_“aj
Here
o Abyo
i 3 !
(Ae. + = Si) B0
5
Sp,9 = — —4— (A + A3+ V(A1 -+ A3 — 4 (4,45 — A,A,).

The method of reduction to ordinary differential equations, used here to solve the
problem with boundary conditions of the first kind, allows us to make, while determining
the transfer potentials, the best possible choice in the class of functions having a given
a priori dependence on the spatial variable. This, as is seen from the preceding example,
leads to simple computations, but does not allow us to construct a converging sequence when
computing approximate solutions with a given accuracy, a circumstance which complicates the
a priori estimate of the error. At the same time, this method in a number of cases allows
us to rapidly obtain a good approximation of the transfer potentials. We shall demonstrate
this with the example of the preceding problem, carrying out an a posteriori estimate of
the error by comparing the approximate solutions (10) with the exact solutions for the case
where Ko* =Pn=0., From (13) we have ¥, =exp(—5/2xFo). This expression together with
expression (10) for the temperature coincides with the analogous problem of heat conduction
obtained in [9]. In Fig. 1 we have represented the approximate solutiomns (10) for the
potential 6; (points) and the exact solutions of the corresponding problem of heat conduc-
tion [10]. The comparison demonstrates their good agreement. We now take the boundary
conditions in the form

00,

B 1, Fo)— B, -2
X 0X

where B; = Kiq =const, B,=Pn Kiq + Kip +const.,

(0, Fo)=10, 0,(X, 0)==0, (14)

Following [11], we introduce layers of potentials 6, and 8, of thickness &§;(Fo) and
62(Fo), respectively, developing with time, and divide the process of transfer into two
stages. At the first stage (§4=<1) the profiles of the transfer potentials are represented
in the form

._5&,

Y (X —(1—=38) (15)

Gi:

Substituting (15) into (11), carrying out integration over X within each layer, where
nonzero distribution of the transfer potential exists, and solving then the Euler—Lagrange
equation obtained in the case A+0, for 81 with the initial conditions §1(0) =0, we have
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ml -

/ B, 17 _ B, \
6, = 5[/1——-.‘42 = )Fo‘ . 62‘=[0<A-—A u'Fo} .
' [ \ ' Bu j ? * B, } (16)
Here the simplex p=6,/8,; is determined from a quadratic equation obtained with the use of
(16).

At the second stage a variation of the potential in the plane X =0 takes place, In
this case the boundary conditions (14) are satisfied by the functions

0;=9g; + é‘ B; X2 (17)

Here q4 = qi(Fo). Expressions (17) and (11) lead to the Euler—Lagrange equations relative
to the functions qj, the solution of which in the case of the initial conditions q;(Fo') =
0, q2(Fo™) =0 has the form

gy = (A48, — A,By) (Fo—F0'), gy = (43B,— A,B) (Fo— Fof). (18)

The instants of ending of the first stages Fo' and Fo" are determined from (16) for
§1(Fo') =1 and §,(Fo") =1, respectively.,

The results (15)-(18) completely coincide with the solutions of this problem obtained
in [8] on the basis of the supplementary form of another variational principle, but the
procedure of computations in the given case is somewhat shorter. Also an estimate of the
accuracy of approximate solutions is given there and, in particular, it is shown that in
form they completely coincide with the quasistationary terms of the corresponding exact
solutions [1].

Thus, the variational principle considered allows us to obtain simple approximate solu-~
tions of problems of combined heat and mass transfer, and can be used for the solution of
also other problems leading to the system of equations (1).

NOTATION

X1, X2, X3, spatial coordinates; t, time; v, region occupied by a body; ¥, Lagrange
function; c¢q and cp, specific heat and mass capacity; vy, density of medium; Aq and Ap,
coefficients of heat and mass conduction; e and p, criterion and specific heat of phase
transformation; §, Soret coefficient; wq and wm, rates of heat and substance liberation,
respectively, per unit volume; dq, thermal diffusivity; ( )%, characteristic quantities
with dimensions; X, dimensionless coordinate; Fo, Fourier number; Lu, Pn, Ko*, Lykov,
Posnov, and modified Kossovich numbers; Poq and Pop,, Pomerantsev heat and mass exchange
numbers,
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PROBLEM OF A PISTON IN A RELAXING GAS

N. S. Zakharov and V. P. Korobeinikov UDC 533.6.011.72

The possibility of obtaining an oscillatory inversion of population in CO, + N, +
He mixtures behind nonstationary shock waves is studied.

In [1-5] the possibility of obtaining an inversive population in gases comsisting of
multiatom molecules by means of thermal methods of pumping. In particular, inversion between
the oscillatory levels (04°0-00°1l) and (20°0-00°1) of the CO, molecule behind stationary
shock waves is considered. Below we use the motions of an ideal, non-heat-conducting, per-
fect gas in the case of the problem of a symmetric piston moving in a CO, +N; +He mixture.
For the analysis of oscillatory relaxation, we use the kinetic Anderson model [3, 5].

In a gaseous medium at rest, let the initial instant of motion of a piston obey the
law rp==Apt5, where Ap, §=const. A shock wave is formed in front of the piston [6]; this
wave excites oscillatory relaxation leading to an inversive population of the oscillatory
levels of CO; molecule,

According to the Anderson model [3, 5], the oscillatory levels of CO, and N, molecules
group into two "modes." This is based on the characteristic feature of the CO, molecule,
which manifests itself in the fact that the strain oscillations v, and the symmetric oscilla-
tions v, which very rapidly come into equilibrium with them, have a shorter relaxation time
than the asymmetric oscillations vs. On the other hand, thanks to the almost equal disposi~
tion, the asymmetric oscillations vs rapidly exchange energy with the oscillatory level of
the N, molecule, Such a feature of the CO. and N, molecules allows us to unite the oscilla=-
tions vi and v; into "mode" I, and the oscillations vs and v into the "mode" II.

Since the lower oscillatory levels are of the major interest, in the case of calcula-
tions the model of the harmonic oscillator

dE; _ Er(N)—E(T1)
dt Tr

remains valid, analogously for ETy, where ty, TI1 are the characteristic relaxation times;
T is the translational temperature. The values 1] and 17y are certain effective values
determined according to the rule of "parallel resistance™ [3, 5]. The oscillatory temper-
atures Ty, Try can be found, using the relations for the quantities Er, E1y:

@

: 9 20, 2)
E =C ; + ’ (
1 co,Reo, lexp(8/T;)— 1] ' lexp (6/T; 2)— 1]
. 0,
_ —_—2 L CN RNy,
En CmﬂwWﬂNW%ﬂ—”+ MN[MNWﬂW—”

Here Cco,, RCO, are the mass fraction and the gas constant for CO.; CN,, RN, are determined
analogously to N3 01 =hvi/k are the corresponding characteristic temperatures. When com-
puting the level populations in "modes™ I and IT, we take as valid the Boltzmann distri-
bution over the levels within the "modes“‘ [3-51].

The movement of the gas will be described by Egs. (1) and (2) in combination with the
equations of conservation of mass, momentum, and energy, which can be taken in the form

dp Jpu . ou
B T el 2 o,
ot + or T r
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