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A VARIATIONAL PRINCIPLE OF THE HAMILTON TYPE 

OF NONLINEAR PHENOMENA OF COMBINED TRANSFER 

Yu. T. Glazunov UDC 536.248:517.972.5 

A Lagrange function is given on the basis of which the variational principle of 
nonlinear combined transfer phenomena is built. 

A great applied importance at the present time is possessed by mathematical models 
found on the use of a system of nonlinear partial differential equations of the form 

n 

a@~at - ~ a~h (@) div (bik (@) grad @A) +~(q) (i = I, 2,., 10 (i) 

Here ~i =oi(x~, x2, x~, t) (i=l, 2, .... n) are functions (transfer potentials) which are 
continuous together with their derivatives; ~ik, bik, ~i (i, k=l, 2,..., n) are continuous 
functions of transfer potentials # = (~i, ~2, .... ~n). 

By means of this system, e.g., we describe phenomena of combined transfer of an arbi- 
trary number of substances in a continuous medium occupying a volume v, in the presence of 
sources and sinks of substances and, in particular, phenomena of combined heat and mass 
transfer [i]. Systems of equations, being particular cases of system (I), lie at the basis 
of the investigation of biochemical reactions [2-4]~ nerve conductivity [5], development of 
malignant tumors [6], etc. 

It is known that investigation of system (1) in each concrete case is complicated by 
difficulties caused by its nonlinearity, and in rare cases is completed in t closed form. 

During the recent years in the solution of problems of thermodynamics of irreversible 
processes, a greater and greater role is played by variational methods. Allowing us partly 
to eliminate the difficulties connected with nonlinearity of the problems9 they in a number 
of cases allow us to obtain effective approximate solutions of problems of combined transfer 
[7, 8]. It should be noted that the variational principles forming their basis usually do 
not use the Lagrange function, i.e., these principles do not possess a Hamiltonian form. 

We consider the possibility of using a variational principle of the Hamilton type in 
the solution of problems leading to a system of equations (i). 

Taking as [to, t~] an arbitrary segment of time, we write the integral of action in 
the form 

t~ 

t0v 
(2) 

We shall assume for a start that some natural boundary conditions are absent. This 
assumption is equivalent to the assertion that variations of transfer potentials 6~i (i = i, 
2, ..., n) on the boundary of the volume v are zero at any time instant t(to~t~tl), and 
also 6~i]to = 6~iltl =0 within the volume v and on its boundary. 

The system of equations (i) can be obtained by means of the variational principle 3I = 0, 
if in (2) we take the Lagrange equation in the form 
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Fig. i. Comparison of 
approximate temperature 
profiles (points) with 
exact profiles (solid 
lines) for the case of an 
infinite plate in dimen- 
sionless variables. 

_ _  ~ 7  aik (~) div (b,~ (#) grad r  (~) - - ,  

w h i l e  t h e  p a r a m e t e r  a ,  e n t e r i n g  i n t o  t h e  L a g r a n g i a n  (3) i s  a l l o w e d  to  t e n d  to  z e r o  a f t e r  
t h e  p r o c e s s  o f  v a r i a t i o n  i s  c o m p l e t e d  ( h e r e  b y  a d o t  a b o v e  t h e  symbol  we d e n o t e  a d e r i v a t i v e  
with respect to time). 

Indeed, applying with (3) taken into account the system of Euler--Lagrange equations 
for the generalized coordinates ~i 

3 3 

a ag _V a ae, at a~  ~ ~ a ( a e , / a x j )  + ax~ a(a~e,lax#) = 0 ( i  = i ,  2 . . . .  , n) ,  (4) 
~=l :=l 

we obtain after division of both sides by exp(t/~), expressions of the form 

~ i - -  a ihd iv (b ikgrad~k) - -mi  = G~ xj, t, #i, ~i, Ox i , 
k==! 

I f  t h e  L a g r a n g i a n  i s  c h o s e n  i n  t h e  fo rm o f  r e l a t i o n  ( 3 ) ,  t h e n  f u n c t i o n s  Gi on t h e  
r i g h t  s i d e  o f  t h e  l a s t  e x p r e s s i o n  t e n d  t o  z e r o  u n d e r  t h e  c o n d i t i o n  a + 0 .  With  t h i s  t a k e n  i n  
i n t o  a c c o u n t ,  L a g r a n g i a n  (3) l e a d s  to  t h e  s y s t e m  o f  e q u a t i o n s  ( 1 ) .  

The approach to the construction of variational principles of the Hamilton type just 
considered is generalized to the case of nonlinear anisotropic combined transfer of an arbi- 
trary number of substances. This phenomenon takes place when the coefficients of conductiv- 
ity of the medium for the different substances taking part in the transfer, depend on the 
directions of transfer. The system of equations (I) is then written as 

a~  _ a~k(~) O (Lik a~k~ 
at ~x~  ~(~)-~x~ / + mi (~) (i = 1, 2 . . . . .  n). (5) 

Here the coefficients L~B ik are a tensor of the second rank; over the repeated lower Greek 
indices summation is carried out from 1 to 3, while over the upper repeated indices i and k 
summation is carried out from 1 to n. The Lagrange function in this case assumes the form 

L ~ ( ~ ) u . ~ $ / - - ( o Z ( ~  ) exp ~ " (6) 
~ = "~-'~ i= OX~ 

C a r r y i n g  ou r  f o r  (6) t h e  c o n s t r u c t i o n  o f  t h e  E u l e r - - L a g r a n g e  e q u a t i o n s  and g o i n g  to  t h e  
limit with ~ § O, it can be shown that Eq. (5) follows from (6). 

We shall demonstrate the possibility of practical application of the formalism under 
consideration, to investigation of problems of combined transfer with an example of a sys- 
tem of equations of heat and mass transfer (n = 2, ~ t and ~2 are the transfer potentials of 
heat and mass of a combined matter): 

C q ~  = d i v ( s  epcm?#~ + Oq(~,  ~) ,  (7) 

c ~ ? ~  = div(kmSgrad~O + d i v ( ~ g r a d ~ ) +  m ~ ( ~ ,  ~ ) .  

The Lagrange function (3) in this case has the form 
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2(/  
('3 ' -2  [ . 

k,,~ grad ~e) --i ~o,,~] -- ': + i O~ - -  -- 
cq? j L 

__1 div ()~ grad ~) -- ep [div (kin6 grad #~ -:- 
c,~? cq? 

1 div (k~n6 grad ~, --r ~m grad 9.,) -- (o,____~0, ] 
Cmy Cm'~ . J 

exp - - .  
o~ (8) 

We take 

Zq := )~Ml, %? =: c~?*N,, ep = e*p*L~, ~ , ,=  )~I:I,M.,., 

(here Hi, Ni, Li, 
tials e ,  and 02). 
ten as 

- -  C 6 " 4 ,  %- - :  4 - %  ,o,,, = 

1 L~ ~aq 1 , K2 . . . .  , Ka- 
k -- R---g- - , K , -  NI N2 NiN~ 

Oi (i = !, 2) are continuous functions of the dimensionless transfer poten- 
Then for an infinite plate of thickness R the Lagrange function is writ- 

h 
8 Fo , --O~} - -  Ko* Pn Lu " OX J 

-- Ko* Lu Ka ~ MI - - ~ -  - -  PoqKiQi -[-- Ko* Lu PomKaQ.., - 

-{ " L,. 8 X  ] - 8 X  O X  ] " A 
+ Lu PnKe -- Ml -- (9) 

With L n =Mn=Nn E i, ~n E 0 we consider the sequence of obtaining approximate solutions 
of concrete problems for the case of an infinite plate. For this we use the method of 
reduction to ordinary differential equations. Specifying the behavior of the potentials 
e, and e2 with respect to a spatial variable and computing the integral over this variable, 
the dependence of e~ and e= on the criterion Fo will be determined, proceeding from the 
condition that the Euler--Lagrange equations are ~atisfied for the variational integral 
over time. 

We denote AI =l+Ko*PnLu, A2 =LuKo*, A3 =Lu, A4 =LuPn and will assume in the follow- 
ing that the free index i runs through the values 1 and 2. We take the boundary conditions 

Oi(1, Fo) .... 0i(--  I, F o ) =  0, 0i(X, 0) = Oi0(1 --Xa), Oi0 = const. 

We shall assume that the distribution of the transfer potentials satisfies the boundary con- 
ditions and has the form 

O~ (X,  Fo) = O~0 (1 - -  X 2) ~ (Fo), ~ (0) = 1. ( l O )  

For t he  d e t e r m i n a t i o n  of  t h e  unknown f u n c t i o n s  ~ i (Fo)  we s u b s t i t u t e  e x p r e s s i o n s  (10) 
i n t o  r e l a t i o n  (9) and i n  t he  i n t e g r a l  o f  a c t i o n  

Fo t I 

I := .1" !" oS~dXdFo (11) 
Foo -- I 

we carry out integration over the spatial coordinate. We obtain 

Fo, . Fo, A {'~ Lt-0-~ "2 
| mOqbn 

Foo Foo m = l  
�9 

- -  r . 0 O ' 0 2 

] 1 + ~,~,-:_2u~ ..... 0j%~ 15OioO~0(AiA,, & AaA~)%% exp Fo dFo. (12) 
" A 

I f  t he  i n t e g r a l  of  a c t i o n  (12) i s  s t a t i o n a r y  r e l a t i v e  to  t he  f u n c t i o n s  ~ i ,  which a r e  
i n d e p e n d e n t  v a r i a b l e s ,  t h e n  the  Eu l e r - - La g r a n g e  e q u a t i o n s  
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a a ~  a ~  _-_= o 
a Fo a~i a~i 

must be fulfilled; in the given case they have the form 

2 . 0~ 0 
~ As 020 5 q~l : A1qn~ -- -~ q~,~ = A { . .  "h ,  

010 I 2 ,'~.--A.,, - - f f -~- (h ~- A3(ps = A { . .  "}2. 
5 2o 

Carrying out transition to the limit with respect to A§ we have for determination 
of the functions ~i a system of ordinary differential equations of the form 

2 �9 ~ 2 �9 020 
--~ (p, = - -  A c h  § As ~ , 0  ~_, -g- ~s = A~ ~ 9, - -  Aa~2- (13)  

Its solution with the initial conditions ~i(0)= 1 and different real roots of the character- 
istic equation, 

Here 

e.g., has the form 

a~-- I I --al 
~i -- - -  exp s~Fo q- - -  exp ss Fo, 

(Ps-- a l (a2 - -  l) expsiF ~ + a s ( l - - a j )  exps~Fo. 
a, 2 -- a I as -- a i 

AaOio 
3 

sl ,~ = - -  - -  (A~ + A3 4- V(A~  + Aa) 2 -  4(A~A3 - -  A~A~). 
4 

The method of reduction to ordinary differential equations, used here to solve the 
problem with boundary conditions of the first kind, allows us to make, while determining 
the transfer potentials, the best possible choice in the class of functions having a given 
a priori dependence on the spatial variable. This, as isseen from the preceding example, 
leads to simple computations, but does not allow us to construct a converging sequence when 
computing approximate solutions with a given accuracy, a circumstance which complicates the 
a priori estimate of the error. At the same time, this method in a number of cases allows 
us to rapidly obtain a good approximation of the transfer potentials. We shall demonstrate 
this with the example of the preceding problem, carrying out an a posteriori estimate of 
the error by comparing the approximate solutions (i0) with the exact solutions for the case 
where Ko* = Pn = 0. From (13) we have @ I = exp(--5/2 • Fo). This expression together with 
expression (i0) for the temperature coincides with the analogous problem of heat conduction 
obtained in [9]. In Fig. 1 we have represented the approximate solutions (i0) for the 
potential 01 (points) and the exact solutions of the corresponding problem of heat conduc- 
tion [i0]. The comparison demonstrates their good agreement. We now take the boundary 
conditions in the form 

OOi (1, F o ) = B ~ ,  00~ (0, F o ) = 0 ,  Oi(X, 0)==0,  (14)  
aX aX 

where BI =Kiq=const; B2 =PnKiq+ Kim+coast. 

Following [ii], we introduce layers of potentials el and 02 of thickness ~1(Fo) and 
62(Fo), respectively, developing with time, and divide the process of transfer into two 
stages. At the first stage (~i ~I) the profiles of the transfer potentials are represented 
in the form 

0i B~ [X__(I __~0la" (15) 
26~ 

Substituting (15) into (ii), carrying out integration over X within each layer, where 
nonzero distribution of the transfer potential exists, and solving then the Euler--Lagrange 
equation obtained in the case A*0, for ~i with the initial conditions ~i(0) = 0, we have 
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I 

I II ~ ] 5(AA 5 A 
" ' ~ ~ (16) 

Here the simplex ~ = ~2/~I is determined from a quadratic equation obtained with the use of 
(16). 

At the second stage a variation of the potential in the plane X = 0 takes place. In 
this case the boundary conditions (14) are satisfied by the functions 

I 
Oi = qi -~ - ~  B i X  2. (17) 

Here qi = qi(Fo) �9 Expressions (17) and (ii) lead to the Euler--Lagrange equations relative 
to the functions qi, the solution of which in the case of the initial conditions q1(Fo') = 
0, q2(Fo") =0 has the form 

q~ = (A~Bt - -  A~B~) ( F o  - -  F o ' ) ,  q2 = (AaB2 - -  A~B~) (Fo  - -  Fo") .  ( 1 8 )  

The instants of ending of the first stages Fo' and For' are determined from (16) for 
~1(Fo') =I and ~2(Fo") =I, respectively~ 

The results (15)-(18) completely coincide with the solutions of this problem obtained 
in [8] on the basis of the supplementary form of another variational principle, but the 
procedure of computations in the given case is somewhat shorter. Also an estimate of the 
accuracy of approximate solutions is given there and, in particular, it is shown that in 
form they completely coincide with the quasistationary terms of the corresponding exact 
solutions [i]. 

Thus, the variational principle considered allows us to obtain simple approximate solu- 
tions of problems of combined heat and mass transfer, and can be used for the solution of 
also other problems leading to the system of equations (i). 

NOTATION 

xl, x2, x3, spatial coordinates; t, time; v, region occupied by a body;~, Lagrange 
function; Cq and Cm, specific heat and mass capacity; y, density of medium; %q and Zm, 
coefficients of heat and mass conduction; ~ and p, criterion and specific heat of phase 
transformation; ~, Soret coefficient; ~q and ~m, rates of heat and substance liberation, 
respectively, per unit volume; aq, thermal diffusivity; ( )*, characteristic quantities 
with dimensions; X, dimensionless coordinate; Fo, Fourier number; Lu, Pn, Ko*, Lykov, 
Posnov, and modified Kossovich numbers; Poq and Pom, Pomerantsev heat and mass exchange 
numbers. 
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PROBLEM OF A PISTON IN A RELAXING GAS 

N. S. Zakharov and V. P. Korobeinikov UDC 533.6.011.72 

The possibility of obtaining an oscillatory inversion of population in CO= +N= + 
He mixtures behind nonstationary shock waves is studied. 

In [1-5] the possibility of obtaining an inversive population in gases consisting of 
multiatom molecules by means of thermal methods of pumping. In particular, inversion between 
the oscillatory levels (04~176 and (20~176 of the C02 molecule behind stationary 
shock waves is considered. Below we use the motions of an ideal, non-heat-conducting, per- 
fect gas in the case of the problem of a symmetric piston moving in a C02 +N2 +He mixture. 
For the analysis of oscillatory relaxation, we use the kinetic Anderson model [3, 5]. 

In a gaseous medium at rest, let the initial instant of motion of a piston obey the 
law rp = %pt ~, where %p, 8 = const. A shock wave is formed in front of the piston [6]; this 
wave excites oscillatory relaxation leading to an inversive population of the oscillatory 
levels of C02 molecule. 

According to the Anderson model [3, 5], the oscillatory levels of C02 and N2 molecules 
group into two "modes." This is based on the characteristic feature of the CO2 molecule, 
which manifests itself in the fact that the strain oscillations 92 and the symmetric oscilla- 
tions vx, which very rapidly come into equilibrium with them, have a shorter relaxation time 
than the asymmetric oscillations ~3. On the other hand, thanks to the almost equal disposi- 
tion, the asymmetric oscillations ~3 rapidly exchange energy with the oscillatory level of 
the N2 molecule. Such a feature of the C02 and N2 molecules allows us to unite the oscilla- 
tions vl and ~2 into "mode" I, and the oscillations v3 and v into the "mode" II. 

Since the lower oscillatory levels are of the major interest, in the case of calcula- 
tions the model of the harmonic oscillator 

dE.......~l = E, ( T ) -  E, (T, ) (1) 

dt xz 

remains valid, analogously for EII, where TI, TII are the characteristic relaxation times; 
T is the translational temperature. The values T I and TII are certain effective values 
determined according to the rule of "parallel resistance" [3, 5]. The oscillatory temper- 
atures TI, TII can be found, using the relations for the quantities EI, EII: 

{ O~ 2 0 0 . }  (2) 
El = Cco, Rco, [exp (0t/Tz) - -  1] + [exp ( O J T z ) - -  1] ' 

0s + CN,RN, 0 
Cco, Rco,~ [exp (03/TII) - -  II [exp (O/Tzl) - -  1] El1 m 

Here  CC02, RC02 a r e  t h e  mass f r a c t i o n  and t h e  gas  c o n s t a n t  f o r  C02; CN2, RN2 a r e  d e t e r m i n e d  
a n a l o g o u s l y  to  N2; 0 i  = h ~ i / k  a r e  t h e  c o r r e s p o n d i n g  c h a r a c t e r i s t i c  t e m p e r a t u r e s .  When com- 
p u t i n g  t h e  l e v e l  p o p u l a t i o n s  i n  " m o d e s "  I and I I ,  we t a k e  as  v a l i d  t h e  Bol tzmann  d i s t r i -  
b u t i o n  o v e r  t h e  l e v e l s  w i t h i n  t h e  " m o d e s "  [ 3 - 5 ] .  

The movement of  t h e  gas  w i l l  be d e s c r i b e d  by  Eqs .  (1) and (2) i n  c o m b i n a t i o n  w i t h  t h e  
e q u a t i o n s  o f  c o n s e r v a t i o n  o f  mass ,  momentum, and e n e r g y ,  which  can be  t a k e n  i n  t h e  form 

Op Opu pu 
~ot + ~ + l  r =o, 
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